Blog

Research Trends Li-ion Anode/Cathode Material – NMC, LFP, NCA Chemistries for Lithium Ion Batteries


 

 

anode component

The above graph shows the limitation of cathode material, as the capacity is not going beyond 200Ah/kg

NMC: Provides high capacity and high power. Serves as Hybrid Cell. Favoite chemistry. For many uses market share is increasing. Slowly replacing LFP Lithum batteries

LFP: Very flat discharge characteristic. Relatively higher self discharge rate. One of the safe lithium ion chemistry. China is a larger producer of this battery

NCA: Best Compromise of power and energy density. Voltage (single slope) is an indication of state of charge (SOC).

Out of NMC, LFP & NCA, NMC is a better selection for batteries because of high capacity & high power whereas LFP have specific energy between 90-120(Wh/ kg) & NCA is cost effective but have safety issues because of thermal runaway

cell chemi

Li alloys

Source: CEIR- CECRI

In case of Anode market have moved from Carbon to Si with a high capacity of 4000 Ah/kg but making it nano is an issue here

 Expected battery technology commercialisation timeline

Indications from recent assessments of battery technologies suggest that lithium-ion is expected to remain the technology of choice for the next decade. The main developments in cell technology that are likely to be deployed in the next few years include:

  • For the cathode, the reduction of cobalt content in existing cathode chemistries, aiming to reduce cost and increase energy density, i.e. from today’s NMC 111 to NMC 622 by 2020, or from the 80% nickel and 15% cobalt of current NCA batteries to higher shares of nickel
  • For the anode, further improvement to the graphite structure, enabling faster charging rates
  • For the electrolyte, the development of gel-like electrolyte material. The next generation of Li-ion batteries entering the mass production market around 2025 is expected to have low cobalt content, high energy density and NMC 811 cathodes. Silicon can be added in small quantities to the graphite anode to increase energy density by up to 50%, while electrolyte salts able to withstand higher voltages will also contribute to better performance.

In the 2025-30 periods, technologies that promise significantly higher energy densities are likely to begin entering the market and would push the limits of Li-ion batteries (advanced Li-ion). For example, lithium metal cathodes are a promising avenue for Li-ion batteries with improved performance without relying on cobalt and anodes made of silicon composite might enter the design. In this period, solid state electrolytes might also be introduced and further improve energy density and battery safety.

The Li-ion technology might be overtaken by other battery designs that boast higher theoretical energy densities as well as lower theoretical costs. Examples include Li-air and Li-sulphur batteries. However, their technology readiness level is very low, practical performance has yet to be tested and the performance advantage over lithium-ion is still unproven. Even if battery cells with substantially different designs were to become available in the market by 2030, a time lag due to the need to build up production capacity would delay wide availability on the market for these advanced technologies. This is why most batteries are expected to belong to the “Next generation” technology class in 2030.

 Cathode-anode

Source: CSIR-CECRI

Lithium-ion is expected to remain the technology of choice for the next decade, when it is expected to take advantages of a number of improvements to enhance battery performance. Other technology options are expected to become available after 2030.

  1. Chemistry of Cells produced by major battery cell manufacturers for different EV makers

cell mfg

 

 See also the blog posts:

Comprehensive Inputs on Indian EV Ecosystem

Check out the following sections for comprehensive inputs on Indian EV ecosystem (click on each section for more details)



Devising Your EV Strategy: White Paper from EAI.


Check out: EAI Consulting for Electric Mobility – Electric Vehicles, EV Components & EV Charging Infrastructure 

About EAI & EVNext

EVNext, EAI's specialized consulting division, provides assistance in market research, strategy consulting, technology vendor/supplier finder assistance and more for the complete EV value chain - Li-ion & Lead Acid Battery Cells & Battery Packs, BMS, Battery Manufacturing equipment, EV charging station, battery swapping station, Li-ion & Lead Acid battery recycling, and for a range of electric vehicles - e-bikes, electric bicycles, electric scooters, electric motorbikes, electric autos, e-autos, e-rickshaws, electric trucks, electric LCVs, electric buses and more. Send a note to consult@eai.in if you wish to take EVNext assistance for the Indian electric vehicle market.

EAI's specialized consulting has benefitted clients all across India and select countries outside:

EAI has provided consulting & industry research assistance across India, having clients who have benefitted from our consulting or research from the following cities:

Ahmedabad | Amravati | Amritsar | Asansol | Aurangabad | Bangalore (Bengaluru) | Belgaum | Bhavnagar | Bhopal | Bhubaneswar | Bikaner | Chandigarh | Chennai (Madras) | Coimbatore | Cuttack | Dehradun | Delhi | Dhanbad | Durgapur | Faridabad | Firozabad | Gandhinagar | Gangtok | Ghaziabad | Guntur | Gurgaon | Guwahati | Gwalior | Hyderabad | Indore | Jabalpur | Jaipur | Jalandhar | Jalgaon | Jammu | Jamnagar | Jamshedpur | Jodhpur | Kalyan | Kanpur | Kochi (Cochin) | Kolhapur | Kolkata (Calcutta) | Kota | Kozhikode | Lucknow | Ludhiana | Madurai | Mangalore | Meerut | Mumbai (Bombay) | Mysore (Mysuru)| Nagpur | Nashik | Navi Mumbai | Nellore | Noida | Patna | Pimpri & Chinchwad | Pune | Raipur | Rajkot | Ranchi | Salem | Sangli | Solapur | Surat | Thane | Thiruvananthapuram (Trivandrum) | Tiruchirapally (Trichy) | Udaipur | Vadodara (Baroda) | Vijayawada | Vishakapatnam | Warangal

Countries worldwide where EAI has assisted clients through research reports or consulting

Australia | Austria | Bahrain | Belgium | Brazil | Canada | Chile | China | Croatia | Czech Republic | Denmark | Estonia | Finland | France | Germany | Hong Kong | Hungary | Greece | Iceland | India | Indonesia | Ireland | Israel | Italy | Japan | Kuwait | Latvia | Lithuania | Luxembourg | Malaysia | Malta | Mexico | Netherlands | New Zealand | Norway | Portugal | Republic of Korea (South Korea) | Russia | Saudi Arabia | Singapore | Slovakia | Slovenia | South Africa | Spain | Sweden | Switzerland | Thailand | Tunisia | Turkey | United Kingdom (UK) | United States of America (USA)

100s of Solar Questions Answered @ Ask Solar Mango - Read More

Narasimhan Santhanam

Thank you for reading this post – hope it was helpful. You can connect with me at narsi@solarmango.com . My detailed profile here and my LinkedIn profile here

Posted in: Electric Vehicles, Uncategorized

Leave a Comment ( 0 ) →



Leave a Comment

X

Name

Email

Mobile

Company Name

X

Name(*)

Email(*)

Mobile

Company Name

X

Name(*)

Email(*)

Mobile

Company Name

X

Name(*)

Email(*)

Mobile

Company Name