New Technology for Carbon-Negative Hydrogen Production : by Rochester University - India Renewable Energy Consulting – Solar, Biomass, Wind, Cleantech
Select Page

Themes and Topics

  • Alkaline thermal treatment (ATT)
  • Biomass conversion
  • Biomass hydrogen production
  • Carbon emissions reduction
  • Carbon-neutral energy production.
  • Catalysts for hydrogen production
  • Green Hydrogen
  • Hydrogen production efficiency
  • Pyrolysis technology
  • Renewable energy sources
  • New Technology for Carbon-Negative Hydrogen Production : by Rochester University

    Here’s an article posted in ChemEurope that talks about the new technology developed by the researchers of University of Rochester for Green Hydrogen Production.

    According to the article,


    Top management consulting experts for Bio-energy, EV, Solar, Green Hydrogen

    • Carbon-negative hydrogen production technology is a revolutionary advancement.
    • Developed by researchers at the University of Rochester.
    • Utilizes a special catalyst to remove carbon dioxide from the atmosphere.
    • Converts captured carbon dioxide and water into hydrogen fuel.

    The concept outlined here revolves around utilizing biomass to produce hydrogen through a process called alkaline thermal treatment (ATT). This method aims to address the energy crisis and reduce carbon emissions by providing a carbon-negative approach to hydrogen production.

    Here’s a breakdown of the process and key points highlighted in the article:

    Here's more about EAI

    climate tech image India's first climate tech consulting firm

    climate tech image We work across entire climate tech spectrum

    climate tech imageOur specialty focus areas include bio-energy, e-mobility, solar & green hydrogen

    climate tech image Gateway 2 India from EAI helps international firms enter Indian climate tech market


    Deep dive into our work

    1. Alkaline Thermal Treatment (ATT):
      • ATT involves pyrolysis of biomass at atmospheric pressure and low temperature.
      • The process is facilitated by alkali and catalysts, among other factors, which influence the efficiency of hydrogen production.
      • Key factors affecting efficiency include the type of alkali, feedstock, catalysts, process parameters, and reactors.
    2. Maximizing Efficiency:
      • To maximize hydrogen production efficiency, the alkali used should promote the conversion of biomass into small gasifiable intermediates while enabling in-situ carbon storage.
      • Overcoming kinetic limitations of the reformation reaction under low pressure and temperature in the ATT process can enhance hydrogen production efficiency.
      • Synergy between alkali and metal catalysts is crucial for maximizing efficiency.
    3. Conclusions and Further Study:
      • Further research is needed to understand the transformation of model substances through different alkalis and identify more suitable biomass.
      • Establishing suitable catalyst systems based on intermediate products of the ATT reaction requires analysis into catalyst deactivation mechanisms, active site-carrier interactions, and catalytic structure-activity relationships.
      • Designing reactors and developing efficient inlet/outlet methods are essential for overcoming problems like coking, limited mass transfer, and catalyst regeneration.
      • Economic assessment and energy consumption analysis are necessary for practical implementation.
    4. Industrialization Goals:
      • The ultimate aim is to guide forthcoming experiments on hydrogen production via biomass ATT processes to realize industrialization of this technology.

    Now, let’s delve into the specifics of the process:

    • Biomass Pyrolysis: Biomass undergoes pyrolysis, a process where organic materials are thermally decomposed in the absence of oxygen. This produces biochar, bio-oil, and syngas.
    • Alkaline Treatment: Alkali is introduced into the pyrolysis process to facilitate the conversion of biomass into gasifiable intermediates. These intermediates can then be further processed to produce hydrogen.
    • Catalytic Conversion: Catalysts are employed to enhance the efficiency of hydrogen production. They facilitate the breakdown of biomass intermediates into hydrogen-rich gases.
    • Carbon Sequestration: The process aims not only to produce hydrogen but also to store carbon in situ, contributing to negative carbon emissions.
    • Process Optimization: Parameters such as temperature, pressure, alkali type, and catalyst choice are optimized to maximize hydrogen yield while minimizing energy consumption and carbon emissions.
    • Scale-Up Considerations: Designing scalable reactors and efficient inlet/outlet methods is crucial for industrial-scale implementation.
    • Economic Viability: Economic assessments are necessary to ensure the cost-effectiveness of the process compared to conventional hydrogen production methods.

    In summary, alkaline thermal treatment of biomass offers a promising pathway to carbon-negative hydrogen production, with the potential to contribute significantly to the transition to a carbon-free society.

    Interestingly, we have some other posts related to this content:

    Hydrogen Production from Biomass-IISc’s Technology: IISc introduces groundbreaking technology for extracting hydrogen from biomass, offering a sustainable and eco-friendly alternative for cleaner energy sources. New Hydrogen Production Technology: Thermo-Photovoltaics, Create H2,O2 & Heat – Solar cell innovation uses thermo-photovoltaics to convert sunlight into heat, splitting water into hydrogen, oxygen, and heat for clean energy. . Iridium Catalysts – for Efficient Green Hydrogen Production: Iridium catalysts offer efficiency in hydrogen production but face cost challenges. Research explores strategies like defect engineering for wider adoption.



    About Narasimhan Santhanam (Narsi)

    Narsi, a Director at EAI, Co-founded one of India's first climate tech consulting firm in 2008.

    Since then, he has assisted over 250 Indian and International firms, across many climate tech domain Solar, Bio-energy, Green hydrogen, E-Mobility, Green Chemicals.

    Narsi works closely with senior and top management corporates and helps then devise strategy and go-to-market plans to benefit from the fast growing Indian Climate tech market.

    narsi-img

    Copyright © 2024 EAI. All rights reserved.