History of Industrial Waste Heat Recovery Systems in India - India Renewable Energy Consulting – Solar, Biomass, Wind, Cleantech
Select Page

Early Development and Adoption

Early initiatives were driven by the need to enhance energy efficiency in industries such as cement, steel, and petrochemicals, which are traditionally energy-intensive. The initial focus was on recovering waste heat from exhaust gases in furnaces and kilns, which led to modest energy savings and reductions in fuel consumption.

Government Initiatives and Policies


Top management consulting experts for Bio-energy, EV, Solar, Green Hydrogen

The launch of the Energy Conservation Act in 2001 marked a significant milestone. This act led to the establishment of the Bureau of Energy Efficiency (BEE), which spearheaded various programs to enhance energy efficiency across industrial sectors. One such initiative was the Perform, Achieve, and Trade (PAT) scheme, which incentivized industries to adopt energy-saving technologies, including WHRS.

Technological Advancements

Here's more about EAI

climate tech image India's first climate tech consulting firm

climate tech image We work across entire climate tech spectrum

climate tech imageOur specialty focus areas include bio-energy, e-mobility, solar & green hydrogen

climate tech image Gateway 2 India from EAI helps international firms enter Indian climate tech market


Deep dive into our work

In the early stages, simple recuperators and regenerators were used to recover waste heat. However, as technology progressed, more sophisticated systems like economizers, waste heat boilers, and organic Rankine cycle (ORC) systems were developed. These technologies allowed for more efficient heat recovery and utilization, contributing significantly to energy savings.

For instance, the adoption of ORC systems, which convert low-grade waste heat into electricity, has gained traction in industries like cement and steel. The first successful implementation of ORC technology in India was by Dalmia Cement, which led to a substantial reduction in their energy consumption and operational costs.

Challenges and Future Prospects

Despite the progress, several challenges hinder the widespread adoption of WHRS in India. High initial capital investment, technological complexity, and lack of awareness are significant barriers. However, with the government’s continued emphasis on energy efficiency and sustainability, the future prospects for WHRS in India look promising. The introduction of newer technologies, such as waste heat to power (WHP) systems and advancements in thermoelectric materials, holds the potential to further enhance the efficiency and cost-effectiveness of WHRS. Additionally, government incentives and subsidies can play a pivotal role in encouraging more industries to adopt these systems.

Conclusion

The history of industrial waste heat recovery systems in India is marked by gradual advancements and increasing adoption across various sectors. From early recuperators to sophisticated ORC systems, the journey reflects the country’s commitment to enhancing energy efficiency and reducing greenhouse gas emissions. With continued technological innovation and supportive government policies, WHRS can play a crucial role in India’s sustainable industrial growth.



About Narasimhan Santhanam (Narsi)

Narsi, a Director at EAI, Co-founded one of India's first climate tech consulting firm in 2008.

Since then, he has assisted over 250 Indian and International firms, across many climate tech domain Solar, Bio-energy, Green hydrogen, E-Mobility, Green Chemicals.

Narsi works closely with senior and top management corporates and helps then devise strategy and go-to-market plans to benefit from the fast growing Indian Climate tech market.

narsi-img

Copyright © 2024 EAI. All rights reserved.